Search results for " Volatile"

showing 10 items of 312 documents

Chemical Composition and Biological Activities of Prangos ferulacea Essential Oils

2022

Prangos ferulacea (L.) Lindl, which belongs to the Apiaceae family, is a species that mainly grows in the eastern Mediterranean region and in western Asia. It has been largely used in traditional medicine in several countries and it has been shown to possess several interesting biological properties. With the aim to provide new insights into the phytochemistry and pharmacology of this species, the essential oils of flowers and leaves from a local accession that grows in Sicily (Italy) and has not yet been previously studied were investigated. The chemical composition of both oils, obtained by hydrodistillation from the leaves and flowers, was evaluated by GC-MS. This analysis allowed us to …

(Z)-β-ocimenePrangos ferulaceaantimicrobial activityApiaceae; <i>Prangos ferulacea</i>; (<i>Z</i>)-<i>β</i>-ocimene; GC-MS; antioxidant activity; antimicrobial activityOrganic ChemistryPharmaceutical Scienceantioxidant activityAntioxidantsAnalytical ChemistryAnti-Bacterial AgentsPlant LeavesAnti-Infective AgentsChemistry (miscellaneous)Drug DiscoveryOils VolatileMolecular MedicinePhysical and Theoretical ChemistryGC-MSSicilyApiaceae
researchProduct

Melt inclusions track melt evolution and degassing of Etnean magmas in the last 15 ka

2019

We present major elements compositions and volatiles contents of olivine-hosted melt inclusions from Etna volcano (Italy), which extend the existing database with the aim of interpreting the chemical variability of Etnean magmas over the last 15 ka. Olivine phenocrysts were selected from the most primitive Fall Stratified (FS) eruptive products of picritic composition (Mg# = 67–70, Fo 89–91 ), the Mt. Spagnolo eccentric lavas (Mg# = 52–64, Fo 82–88 ) and among the more recent 2002–2013 eruptive products (Mg# = 33–53, Fo 68–83 ). Crystal fractionation and degassing processes were modeled at temperatures of 1050–1300 °C, pressures &lt;500 MPa, and oxygen fugacity between 1 and 2 log units abo…

010504 meteorology & atmospheric sciencesGeochemistryVolatile contentengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)Mineral redox bufferDegassingGeochemistry and PetrologySilicate melt inclusionPlagioclase0105 earth and related environmental sciencesMelt inclusionsFractional crystallization (geology)OlivineSpinelMelt differentiationGeologyEtna Silicate melt inclusions Volatile contents Melt differentiation Degassing13. Climate action[SDU]Sciences of the Universe [physics]engineeringPhenocrystEtnaGeology
researchProduct

Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: …

2017

The objective of present study was to identify volatile organic compounds (VOCs) emitted from several sources (fuels, traffic, landfills, coffee roasting, a street-food laboratory, building work, indoor use of incense and candles, a dental laboratory, etc.) located in Palermo (Italy) by using canister autosamplers and gas chromatography-mass spectrometry (GC-MS) technique. In this study, 181 VOCs were monitored. In the atmosphere of Palermo city, propane, butane, isopentane, methyl pentane, hexane, benzene, toluene, meta- and para-xylene, 1,2,4 trimethyl benzene, 1,3,5 trimethyl benzene, ethylbenzene, 4 ethyl toluene and heptane were identified and quantified in all sampling sites.

010504 meteorology & atmospheric sciencescanisterHealth Toxicology and Mutagenesislcsh:Medicine010501 environmental sciences01 natural sciencesEthylbenzenePalermoArticleGas Chromatography-Mass Spectrometrychemistry.chemical_compoundPropaneCitiesBenzeneindoor0105 earth and related environmental sciencesvolatile organic compounds (VOCs)Air PollutantsVolatile Organic Compoundscanister; indoor; volatile organic compounds (VOCs); PalermoAtmospherelcsh:RPublic Health Environmental and Occupational HealthButaneToluenePentaneIsopentanechemistryItalyEnvironmental chemistryEnvironmental scienceGas chromatography–mass spectrometryEnvironmental MonitoringInternational Journal of Environmental Research and Public Health
researchProduct

First in-situ measurements of plume chemistry at mount garet volcano, island of gaua (Vanuatu)

2020

Recent volcanic gas compilations have urged the need to expand in-situ plume measurements to poorly studied, remote volcanic regions. Despite being recognized as one of the main volcanic epicenters on the planet, the Vanuatu arc remains poorly characterized for its subaerial emissions and their chemical imprints. Here, we report on the first plume chemistry data for Mount Garet, on the island of Gaua, one of the few persistent volatile emitters along the Vanuatu arc. Data were collected with a multi-component gas analyzer system (multi-GAS) during a field campaign in December 2018. The average volcanic gas chemistry is characterized by mean molar CO2/SO2, H2O/SO2, H2S/SO2 and H2/SO2 ratios …

010504 meteorology & atmospheric sciencesvolcanic gas compositionsGeochemistryFlux010502 geochemistry & geophysicslcsh:Technology01 natural scienceslcsh:ChemistryVanuatu[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyGeneral Materials ScienceGas composition[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentlcsh:QH301-705.5Instrumentation0105 earth and related environmental sciencesFluid Flow and Transfer Processesgeographygeography.geographical_feature_categorySubductionlcsh:TProcess Chemistry and TechnologyGeneral Engineeringlcsh:QC1-999Gas analyzerComputer Science ApplicationsPlumelcsh:Biology (General)lcsh:QD1-999Mount GaretVolcanolcsh:TA1-2040SubaerialPeriod (geology)volatile fluxeslcsh:Engineering (General). Civil engineering (General)GauaGaua Mount Garet Multi-GAS Vanuatu Volatile fluxes Volcanic gas compositionslcsh:PhysicsMulti-GAS
researchProduct

The responses of shoot-root-rhizosphere continuum to simultaneous fertilizer addition, warming, ozone and herbivory in young Scots pine seedlings in …

2017

Abstract It is not clear how climate change in combination with increasing soil nitrogen availability and herbivory affects boreal forests, the largest terrestrial biome in the world. In this study, Scots pine ( Pinus sylvestris ) seedlings were exposed to moderate warming (ca. 1 °C), 1.5 × ambient ozone (O 3 ) concentration, fertilizer addition (120 kg N ha −1 yr −1 ) and shoot herbivory by pine sawfly ( Acantholyda posticalis ) alone and in combination. We measured fine root morphology, mycorrhizal colonization level, root fungal biomass (ergosterol), rhizosphere emission of biogenic volatile organic compounds (BVOCs), and microbial biomass (PLFAs) in the rhizosphere soil as well as seedl…

0106 biological sciences010504 meteorology & atmospheric sciencesField experimentSoil Sciencebiogenic volatile organic compounds (BVOCs)engineering.material01 natural sciencesMicrobiologyectomycorrhizasoil microbesmikrobitorgaaniset yhdisteet0105 earth and related environmental sciencesAbiotic componentmaaperäRhizospherebiologyScots pinegrowth allocationilmastonmuutokset15. Life on landbiology.organism_classificationEctomycorrhizaclimate changegreat web-spinning pine sawflyAgronomy13. Climate actionSeedlingShootengineeringta1181Fertilizer010606 plant biology & botanySoil Biology and Biochemistry
researchProduct

Volatile-mediated foraging behaviour of three parasitoid species under conditions of dual insect herbivore attack

2016

Infochemicals play an important role in structuring intra-and interspecific interactions. Many parasitoid wasp species rely on herbivory or oviposition-induced plant volatiles (HIPVs/OIPVs) to locate their herbivorous hosts, and must cope with variation in the volatile blends due to factors such as plant/host species, herbivore density or attack by several herbivores. However, little is known about how dual herbivory or changes in herbivore density affect multiple parasitoid species, each attacking a different herbivore, in the same system. In a natural system, we investigated the effect of dual attack on the ability of three parasitoid species to differentiate between volatiles induced by …

0106 biological sciences010603 evolutionary biology01 natural sciencesMultitrophic interactionParasitoid waspParasitoidMultiple attackMultitrophic interactionsHerbivore-induced plant volatilesBotanyLaboratory of EntomologyEcology Evolution Behavior and Systematics016-3906Pieris brassicaeAphidbiologyDiaeretiella rapaeOviposition-induced plant volatilesHerbivore-induced plant volatileTrichogramma brassicaebiology.organism_classificationCotesia glomerataPE&RCLaboratorium voor EntomologieBiosystematiekSettore AGR/11 - Entomologia Generale E ApplicataBrevicoryne brassicaeIndirect defenceBiosystematicsAnimal Science and ZoologyEPS010606 plant biology & botany
researchProduct

Effects of transgenic expression of Brevibacterium linens methionine gamma lyase (MGL) on accumulation of Tylenchulus semipenetrans and key aminoacid…

2017

Key message Carrizo transgenic plants overexpressing methionine-gamma-lyase produced dimethyl sulfide. The transgenic plants displayed more resistance to nematode attacks (Tylenculus semipenetrans) and may represent an innovative strategy for nematode control. Abstract Tylenchulus semipenetrans is a nematode pest of many citrus varieties that causes extensive damage to commercial crops worldwide. Carrizo citrange vr. (Citrus sinensis L. Usb × Poncirus trifoliate L. Raf) plants overexpressing Brevibacterium linens methionine-gamma-lyase (BlMGL) produced the sulfur volatile compound dimethyl sulfide (DMS). The aim of this work was to determine if transgenic citrus plants expressing BlMGL show…

0106 biological sciences0301 basic medicineNematodesPlant BiologyPlant ScienceGenetically modified crops01 natural sciencesPlant Rootschemistry.chemical_compoundMethionineMethionine gamma lyaseBrevibacteriumAmino AcidsNematodeCitrus sinensibiologySulfur volatilefood and beveragesGeneral MedicinePlantsPlants Genetically ModifiedTylenchulus semipenetransAmino AcidHorticultureCarbon-Sulfur LyasesBiochemistryCarbon-Sulfur LyasePlant LeaveCitrus × sinensisCitrus sinensisTylenchidaMethionine gamma-lyaseSulfideTransgenePlant Biology & BotanyPlant DiseaseGenetically ModifiedSulfidesArticle03 medical and health sciencesGeneticSulfur volatilesGeneticsAnimalsPlant DiseasesMethionineAnimalfungiPlant RootBrevibacteriumbiology.organism_classificationBrain DisordersPlant Leaves030104 developmental biologychemistryGlycineBiochemistry and Cell BiologyAgronomy and Crop Science010606 plant biology & botany
researchProduct

Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids

2018

Symbiotic relationships benefit organisms in utilization of new niches. In parasitoid wasps, symbiotic viruses and venom that are injected together with wasp eggs into the host caterpillar suppress immune responses of the host and enhance parasitoid survival. We found that the virus also has negative effects on offspring survival when placing these interactions in a community context. The virus and venom drive a chain of interactions that includes the herbivore and its food plant and attracts the hyperparasitoid enemies of the parasitoid. Our results shed new light on the importance of symbionts associated with their host in driving ecological interactions and highlight the intricacy of how…

0106 biological sciences0301 basic medicineWasps01 natural sciencesMultitrophic interactionParasitoidHerbivore-induced plant volatilesGene Expression Regulation PlantLaboratory of EntomologyTrophic levelPlant-mediatedLarvaMultidisciplinarybiologyPolydnavirusHerbivore-induced plant volatilePlantsBiological SciencesWaspPE&RCOrganische ChemieBiosystematiekInteraction networkinternationalLarvaSymbiosiButterfliesZoology010603 evolutionary biologyHost-Parasite Interactions03 medical and health sciencesMultitrophic interactionsSymbiosisButterflieAnimalsSymbiosisCaterpillarSalivaEcosystemHerbivoreParasitic waspVenomsHost (biology)AnimalOrganic ChemistryfungiPlantLaboratorium voor Entomologiebiology.organism_classificationVenom030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicataPolydnaviridaeHerbivoreBiosystematicsEPS
researchProduct

Tomato and flavour

2008

Part 1: Characterization and Composition of Tomato Plant and Fruit, chapter 5; International audience

0106 biological sciences2. Zero hungerAROMA[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringVOLATILE COMPOUNDS04 agricultural and veterinary sciences[SDV.IDA] Life Sciences [q-bio]/Food engineering040401 food science01 natural sciences0404 agricultural biotechnologyNON VOLATILE COMPOUNDSTOMATO SPECIES[SDV.IDA]Life Sciences [q-bio]/Food engineeringFLAVOUR CHARACTERISTICS[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering010606 plant biology & botany
researchProduct

Chemodiversity of the Essential Oil from Leaves of Abies nebrodensis (Lojac.) Mattei

2016

Abies nebrodensis (Lojac.) Mattei (Pinaceae) is a species occurring in a very small population only in a restricted area of Sicily. Its taxonomic classification as different species has been object of discussion. In this work the chemical composition of the essential oil from the leaves is presented for the first time and compared to the essential oils from other euroasiatic species reported in literature. Peculiar characteristics of the essential oil of A. nebrodensis are highlighted.

0106 biological sciencesAbies nebrodensiPlant compositionPopulationBioengineering01 natural sciencesPlant OilBiochemistryEssential oilGas Chromatography-Mass Spectrometrylaw.inventionSettore BIO/01 - Botanica Generalechemistry.chemical_compoundlawBotanyAbieOils VolatilePlant OilsSettore BIO/15 - Biologia FarmaceuticaAbies nebrodensiseducationMolecular BiologyEssential oilbeta-Pineneeducation.field_of_studybiologySettore BIO/02 - Botanica SistematicaChemistry (all)General ChemistryGeneral MedicineBiological classificationβ-PineneSettore CHIM/06 - Chimica Organicabiology.organism_classification0104 chemical sciencesPlant LeavesChemotaxonomy010404 medicinal & biomolecular chemistrychemistryChemotaxonomyPinaceaeMolecular MedicinePlant LeaveAbies010606 plant biology & botany
researchProduct